
International Journal of Theoretical Physics, Vol. 38, No. 5, 1999

(N 1 1)-Dimensional Quantum Mechanical Model
for a Closed Universe

T. R. Mongan 1
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A quantum mechanical model for an (N 1 1)-dimensional universe arising from
a quantum fluctuation is outlined. (3 1 1) dimensions are a closed, infinitely
expanding universe, and the remaining N 2 3 dimensions are compact. The (3 1
1) noncompact dimensions are modeled by quantizing a canonical Hamiltonian
description of a homogeneous isotropic universe. It is assumed that gravity and the
strong-electroweak (SEW) force had equal strengths in the initial state. Inflation
occurred when the compact (N 2 3)-dimensional space collapsed after a quantum
transition from the initial state of the universe during its evolution to the present
state where gravity is much weaker than the SEW force. The model suggests the
universe has no singularities and the large size of our present universe is
determined by the relative strength of gravity and the SEW force today. A small
cosmological constant, resulting from the zero-point energy of the scalar field
corresponding to the compact dimensions, makes the model universe expand
forever.

1. INTRODUCTION

This paper sketches a quantum mechanical model of an (N 1 1)-dimen-

sional universe (with N . 6) arising from a quantum fluctuation. In this

model, (3 1 1) dimensions are a closed universe that is approximately

a Friedmann±Robertson±Walker (FRW) universe in its early stages. The

remaining n 5 N 2 3 dimensions (called the C system) are compact, with
a characteristic size equal to the Planck length.

The (3 1 1)-dimensional sector is treated differently from the usual

quantum cosmology approach involving superspace (or minisuperspace) and

the Wheeler±DeWitt equation.(1,2) Instead, the model uses a SchroÈ dinger

equation for the (3 1 1)-dimensional space like that obtained from the
canonical Hamiltonian formulation of cosmology by Elbaz et al.(1) and
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Novello et al.(2) In particular, refs. 1 and 2 demonstrate that the quantum

dynamics of a homogeneous isotropic universe are equivalent to the quantum

dynamics of a particle in a potential well.

This simple phenomenological model may provide some insight into

(1) general features of more fundamental (N 1 1)-dimensional models of the

forces governing the universe that allow the universe to arise from a quantum

fluctuation and inflate to a radiation-dominated universe similar to the early

stages of our universe (if our universe is closed), (2) the size of the universe

(e.g., ref. 3), (3) how inflation starts and stops, and (4) the magnitude of the

cosmological ª constant.º

The radius of curvature R of a closed FRW universe(4) obeys the Fried-

mann equation

1 dR

dt 2
2

2 1 8 p G

3 2 « 1 R

c 2
2

5 2 c2 (1)

where « is the mass-energy density of the universe, the gravitational constant

G 5 6.67 3 10 2 8 cm3/g sec2, and c 5 3 3 1010 cm/sec. At present, the

mass-energy density is « 5 « r(R0 /R)4 1 « m(R0 /R)3, where « r , « m , and R0 are

respectively the radiation and matter-energy density and the radius of curva-

ture of the universe today. Multiplied by 1±2 m, equation (1) describes the motion

of a particle with mass m and energy 1±2 mc2 in the potential

VR 5 2
m

2 1 8 p G

3 2 F « r 1 R0

R 2
4

1 « m 1 R0

R 2
3 G 1 R

c 2
2

The constants in this potential can be approximated by taking « r ’ 10 2 34 g/

cm3 ? c2, « m ’ 10 2 29 g/cm3 ? c2, and R0 ’ 1028 cm, giving

VR 5 2 5.6
m

2 1 1071

R2 1
1048

R 2 g(cm/sec)2

The size of the constants in this potential, and the corresponding large size

of our universe, has been a puzzle for years.(3) In the early universe, when

R , , 10 2 5R0, the radiation term in VR dominated, so this paper focuses on

the radiation-dominated universe.

The size of the compact dimensions corresponds to a gauge singlet

scalar field f in the FRW sector of the universe (e.g., ref. 5). The equation

for the radius of curvature of an FRW universe containing radiation and a

scalar Higgs field f is(4)
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1 dR

dt 2
2

2
8 p G

3 F « r 1 R0

R 2
4

1 « f G 1 R

c 2
2

5 2 c2

where « f 5 1±2 ( - f / - t)2 1 V f ( f ). If compact dimensions exist, « f ’ 0 today,

because the Friedmann equation (1) is a reasonable model for our universe.

Today, the ª gravitational structure constantº Gm2
p / " c 5 5.91 3 10 2 39 is

the ratio of the strength of gravity to the strength of the strong force. The

proton mass is mp 5 1.67 3 10 2 24 g, " 5 1.05 3 10 2 27 g cm2/sec, the

Planck mass M 5 ! " c/G 5 2.18 3 10 2 5 g, and the Planck length d 5
1.62 3 10 2 33 cm. Initially, gravity and the strong-electroweak (SEW) force

had equal strength, Gi m
2
p / " c 5 GM 2/ " c 5 1, and the gravitational constant

was Gi 5 (M/mp)
2 G 5 1.70 3 1038 G. The Planck length was d i 5

! " Gi /c
3 5 (M/mp) d 5 2.11 3 10 2 14 cm and the Planck mass was M i 5

! " c/Gt 5 mp.

2. THE MODEL

This model is formulated in an abstract N-dimensional curvature space.
This space describes the curvature of a homogeneous N-dimensional physical

space with two subspaces related to the FRW and C systems. The coordinate

in each of the N dimensions of a state in the curvature space is the radius

of curvature of the corresponding dimension of that state in the N-dimensional

physical space. Henceforth, the terms energy, angular momentum, force, and

mass refer to effective quantities in this curvature space, unless indicated
otherwise.

If the universe began spontaneously from a quantum fluctuation, all

total quantum numbers must be zero. When the total energy and total angular

momentum in the curvature space is zero, the SchroÈ dinger equation for the

N-dimensional radius of curvature is 2 ( " 2/2m) ¹ 2
R C 1 VR C 5 0 in the cur-

vature space, where R is the magnitude of an N-dimensional vector
-

R . Let

R2 5 R2 1 r 2, where R is the radial coordinate in the 3-dimensional subspace

describing the curvature of the isotropic FRW space and r is the radial

coordinate in the (n 5 N 2 3)-dimensional subspace describing the curvature

of the C space. The separation of VR into terms involving only R and terms

involving only r is suggested by the fact that the Friedmann equation with
no explicit dependence on compact dimensions is a suitable model for our

own (3 1 1)-dimensional universe. If VR 5 VR 1 Vr , the resulting SchroÈ d-

inger equation

2
" 2

2m
( ¹ 2

R 1 ¹ 2
r) C 1 (VR 1 Vr) C 5 0

can be solved by separation of variables. The separated SchroÈ dinger equa-

tion is
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F 1

c (R)

2 " 2

2m
¹ 2

R c (R) 1 VR G 1 F 1

c (r)

2 " 2

2m
¹ 2

r c (r) 1 Vr G 5 0

where each square bracket equals a constant, denoted 2 E and E, respectively.

This model assumes the SchroÈ dinger equation for the radius of curvature

R is the nonrelativistic quantum mechanical analog of the Friedmann equation
for the radius of curvature of a closed radiation-dominated FRW universe.

The Friedmann equation for a radiation-dominated universe (and the corres-

ponding SchroÈ dinger equation) is equivalent to the equation of motion of a

nonrelativistic particle of mass m in the curvature space, moving with energy

2 1±2 mc2 in a 1/R2 potential. The equations can be generalized to energies E
different from the Einstein value E 5 2 1±2 mc2 (see, e.g., ref. 6, p. 744). The

fact that the quantum dynamics of a radiation-dominated FRW universe is

equivalent to the quantum dynamics of a particle in a 1/R2 potential is

demonstrated in refs. 1 and 2 (although the limit on the strength of the

potential in ref. 2 is inappropriate; see ref. 7, p. 1666). Note that this model

aims only to explore some possible consequences of the just-mentioned
equivalence, and the SchroÈ dinger equation in the 3-dimensional subspace

does not purport to represent the quantum mechanical extension of a classical

field theory of gravity in a curved space-time.

The quantum mechanical analog of the generalized Friedmann equation

is an S-wave Schrodinger equation in the 3-dimensional subspace of the N-

dimensional curvature space. When « f ’ 0, the SchroÈ dinger equation describ-
ing the curvature of the radiation-dominated physical FRW space (and

reflecting the isotropy of the FRW universe) is

2
" 2

2m

d 2

dR2 c 2
4 p mG

3c2

« rR
4
0

R2 c

5 2
" 2

2m

d 2

dR2 c 2
mG

2

A

R2 c 5 2
mc2

2
c (2)

Setting k 5 mc/ " and p 5 ! m2GA/ " 2 2 1/4 in equation (2), we find the
solution to the SchroÈ dinger equation for a radiation-dominated FRW universe

to be c 5 KRhip 2 1/2 (i k R), where h is the spherical Hankel function and K
is a normalization constant (ref. 7, p. 1665). This radial wave function is

zero at R 5 0, so quantum mechanics forbids singularities in an FRW universe.

An S-wave SchroÈ dinger equation must also be used to describe the

curvature of the C space to make the total N-dimensional ª angular momen-
tumº zero, so the universe can arise spontaneously from a vacuum fluctua-

tion. Thus, the C space must be isotropic in this model. Writing C 5
R 2 1 c (R)r 2 1/2(n 2 1) c 8(r), we find that the separated SchroÈ dinger equation

becomes
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F 1

c (R)

2 " 2

2m

d 2 c (R)

dR2 1 VR G 1 F 1

c 8(r)

2 " 2

2m

d 2 c 8(r)

dr 2

1
" 2(n 2 1)(n 2 3)

8mr 2 1 Vr G 5 0 (3)

The curvature of the universe is not changing rapidly today, so the forces

now acting to change the curvature of the universe must be small. The radius

of curvature of our three-dimensional universe is large today, so the 1/R3

force from radiation (and the 1/R2 force from matter) in the potential VR is

small. The radius of curvature of the C dimensions (if they exist) must be

very small because they have not been observed. This indicates an inverse

relationship between the forces acting to change the curvature of the two

sectors of the universe, whereby the forces are small when r is small and R
is large. So this model parametrizes the C-system potential as Vr 5 kr a ,
where a is a positive real number. It will be shown that a ’ 4 is needed to

produce our universe. Note that this model is not a generalized Kaluza±Klein

model because it does not assume a generalized Einstein equation holds in

the (N 1 1)-dimensional universe, and the potential Vr is a monomial in r
and not a polynomial in r 2 1.(8)

The C-system effective potential

" 2(n 2 1)(n 2 3)

8mr 2 1 kr a (4)

has its minimum at the Planck length d if k 5 " 2(n 2 1)(n 2 3)/(4m a d 2 1 a ).

Then, at r 5 d ,

Vr 5
" 2(n 2 1)(n 2 3)

4m d 2 1 2 1 a
2 a 2

The ground state is at the bottom of the potential well, so

mc2

2
5

" 2(n 2 1)(n 2 3)

4m d 2 1 2 1 a
2 a 2

and m 5 b ! " c/G, where ! " c/G is the Planck mass and

b 5 1±2 ! (n 2 1)(n 2 3)(1 1 2/ a ).

3. INITIAL CONDITIONS OF THE UNIVERSE

The universe can begin with a quantum fluctuation into a state composed

of a radiation-dominated FRW universe obeying the SchroÈ dinger equation
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(2) with gravitational constant Gi , radius ^ R & 5 d i , and energy 2 1±2 b mpc
2,

and the ground state of the C system with radius ^ r & 5 d i and energy 1±2 b mpc
2.

If V f ( f ) 5 0 at the bottom of the C-system potential well, « f i 5 0 (because
the radius of the C system does not change in this initial state, so - f i / - t 5
0). For small values of p 5 ! m2GA/ " 2 2 1/4, the probability density for the

FRW radius is strongly peaked near d i and the initial value of the constant

A in the SchroÈ dinger equation (2) is just that required to produce ^ R & 5 d i.

Then the initial state has ^ R & 5 ^ r & 5 d i , the radius of curvature is the same

in all N dimensions, and dR/dt 5 dr/dt 5 0.

4. QUANTUM TUNNELING TRANSITION

Once the initial state arises by a quantum fluctuation from the vacuum,
a quantum tunneling transition can occur from the initial state to another state

with ^ R & 5 ^ r & 5 d i , dR/dt 5 dr/dt 5 0, and total energy zero, corresponding to

the early stages of our universe, where the gravitational constant (and the

Planck mass and Planck length) have today’ s value, the C-system effective

potential (4) has its minimum at r 5 d , k 5 " 2(n 2 1)(n 2 3)/(4 b M a d 2 1 a ),
and ground state energy 1±2 b Mc2, and the FRW system is described by the

SchroÈ dinger equation (2) with m 5 b M.

In particular, for one specific value of the constant A in equation (2), a

tunneling transition can take the initial universe to a state where the C system

is in an excited state of the effective potential (4) with energy E 8, ^ r & 5 d i ,

dr/dt 5 0, and the FRW system is in a tightly bound non-Einstein state of
the FRW SchroÈ dinger equation (2) with energy 2 E 8, ^ R & 5 d i , and dR/dt 5
0. In this posttunneling state, the C system must be at its classical turning

radius at r 5 d i , with

E 8 5
" 2(n 2 1)(n 2 3)

4 b M a d 2 1 d i

d 2
a

The FRW system must also be at its classical turning radius R 5 d i , with

A satisfying

2
b MG

2

A

d 2
i

5 2
" 2(n 2 1)(n 2 3)

4 b M a d 2 1 d i

d 2
a

When the C system drops to its ground state with energy 1±2 b Mc2 and raises
the energy of the FRW system to the Einstein energy 2 1±2 b Mc2, the result is

a radiation-dominated FRW universe with

A 5
"

c(1 1 0.5 a ) 1 d i

d 2
a 1 2

The mechanism for the energy loss from the C system when the C system
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drops to its ground state and raises the FRW system to the Einstein energy

must come from a more fundamental (N 1 1)-dimensional model of the

forces governing the universe. However, at the end of the process, the potential
in the FRW SchroÈ dinger equation (2) is

VR 5
m

2

1

R2 F G "
c(1 1 0.5 a ) 1 d i

d 2
a 1 2 G

If a 5 4, VR 5 3.8 (m/2) 1069/R2, near the approximate value VR 5 5.6

(m/2) 1071/R2 estimated for our universe. Furthermore, since the fine structure

constant is about 100 times smaller than the strong coupling constant, the

breaking of the strong-electroweak symmetry might be expected to increase
the value of A by about two orders of magnitude. So, this model suggests

that a nonsingular radiation-dominated FRW universe similar to the early

stages of our universe can be created by a quantum fluctuation from the

vacuum (if our universe is closed).

5. INFLATION

The size of the C dimensions corresponds to a scalar field in the FRW

system(5) that determines the strength of the gravitational constant and is

constant throughout the FRW space. If the scalar field f in the FRW system

is related to r (the size of the C system)(5) by f 5 k (c/ ! G ln( d i /r), where

k is a real number, then f 5 0 when r 5 d i. The model has an inflationary

phase because, after the quantum tunneling transition discussed above, the
scalar field f associated with the compact dimensions has a large energy

density. The specifics of the inflation of the model universe after the tunneling

transition depend on the rate of energy loss from the C system to the FRW

system, dropping the C system to its ground state and raising the FRW system

to the Einstein state; the rate of decay of the scalar field energy in the FRW

system to radiation; and the value of the constant k , which must be obtained
from a more fundamental (N 1 1)-dimensional model of the forces governing

the universe. However, the inflationary process can be outlined by looking

at the situation after the quantum tunneling transition in a little more detail.

Immediately after the quantum transition, f 5 0, the gravitational con-

stant is Gi and the Planck mass is mp. Since « f ’ 0 today, V f ( f f) ’ 0 when

r 5 d at the bottom of the potential well in the posttunneling state. Because
the bottom of the effective potential (4) is no longer at r 5 d i , V f (0) Þ 0

after the tunneling transition. Since V f (0) Þ 0 after the tunneling transition,

« f Þ 0 and the FRW system can be described by the SchroÈ dinger equation

for a universe containing radiation and a scalar field:
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2
" 2

2m f

d 2

dR2 c 2
4 p m f G f

3
( « r 1 « f ) 1 R

c 2
2

c 5 2 E 8 c

or

2
" 2

2m f

d 2

dR2 c 2
4 p m f G f

3c2 1 A8

R2 1 « f R2 2 c 5 2 E 8 c

The effective potential in this equation has a local maximum at R4
max 5 A8/

« f . If the transition energy E 8 lies at the top of this local maximum, the

quantum tunneling transition results in a non-Einstein FRW state (with wave

packet centered at R 5 d i) in unstable equilibrium (with dR/dt 5 0). At the

moment of transition « f 5 A8/ d 4
i , so « r 5 « f and A8 must satisfy

8 p m f G f A8

3c2 d 2
i

5
" 2(n 2 1)(n 2 3)

4 b M a d 2 1 d i

d 2
a

After the tunneling transition, when R . Rmax, the « f term dominates and

the universe inflates. In other words, after the tunneling transition, the force
(d/dr)Vr( d i) constraining the C dimensions is greater than the zero force

(d/dR)VR( d i) 5 0 constraining the FRW dimensions. So, the C system shrinks,

the energy of the C system drops to the ground-state energy, and the energy

of the FRW system rises to the Einstein value 2 1±2 b Mc2. As the C system

shrinks, f increases, G decreases from Gi to its present value, the Planck

mass increases from mp to its present value (so m f ® b M ), and the energy
in the scalar field is converted to radiation, doubling « rad as « f ® 0. The

result is a radiation-dominated FRW universe satisfying equation (2) with

A 5
"

c(1 1 0.5 a ) 1 d i

d 2
a 1 2

The classical analog of the FRW SchroÈ dinger equation with an « f term is

H 2 5 1 RÇ

R 2
2

5
8 p G

3c2 F A

R4 1 « f G 2
E 8

R2

When R increases, the universe reaches a point where « f dominates, and

inflation begins. During inflation(4)

H 2 5
8 p G

3c2 F 1

2
f Ç 2 1 V( f ) G and f È 1 3H f Ç 1

- V

- f
5 0

In this model the scalar field is necessarily the same at all points in 3-

space and it changes simultaneously at all points in 3-space, avoiding problems
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with ª bubble formationº ,(8) inhomogeneity, or magnetic monopoles. (9) How-

ever, the SEW symmetries must break during inflation to prevent monopole

dominance of the universe.

6. COSMOLOGICAL CONSTANT

After inflation, the scalar field f corresponding to the compact dimen-

sions is constant throughout 3-space. Limits on the cosmological constant(4)

require the energy density of the scalar field to be « f ’ 0 (in spectacular
disagreement with predictions of the standard model in quantum field the-

ory(10)), but it is not exactly zero. After inflation, the energy density of the

scalar field is determined by the zero-point energy of the Hamiltonian 1±2 f Ç 2 1
V f ( f ). This nonzero energy density of the scalar field introduces a term

analogous to a cosmological constant into the model, so the model universe

eventually expands forever (ref. 4, p. 71). Cosmological observations establish
an upper bound ’ 10 2 54 cm 2 2 for the value of the cosmological ª constantº

today (ref. 4, p. 74). A lower bound on the cosmological ª constantº today

can be obtained from the uncertainty principle, because the energy « f of the

scalar field f in a comoving unit volume cannot be precisely zero and D « f

D t $ " . The time since inflation is ’ 1017 sec (1010 years), so the uncertainty in
the energy of the scalar field sets a lower bound on the effective cosmological

ª constantº of L 5 8 p G D « f /c4 $ 10 2 75 cm 2 2 today (ref. 4, p. 69).
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